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Abstract: A well known common feature of oscillatory system and biological oscillator, in particular, is their
ability to synchronize. Synchronization can be defined as, the adjustment of rhythms of oscillating objects due
to their weak interaction. The phenomenon which results in the matching of the output frequency with the input
frequency is called frequency entrainment or synchronization. An Oscillator is any system that exhibits periodic
behaviour. Synchrony is the most familiar mode of organization for coupled oscillators but when two or more
oscillators are coupled together, the ranges of possible behaviour become much more complex. As the
qualitative features of the excitation potential of the heart is very close to the dynamic behaviour of the classical
oscillator Van der Pol, the same is considered in this work. The Van der Pol oscillator is an oscillator with
nonlinear damping, governed by the second order differential equation, ( ) , where ‘ ’ is
the position coordinate, a dynamic variable, and ‘ ’ is a scalar parameter which controls the nonlinearity and the
strength of the damping.
Two such Van der pol Oscillators are bidirectionally coupled where the coupling factor induces an adjustment
of the rhythms on to a common synchronized manifold, thereby inducing mutual synchronization behavior.
Suitable variations are induced in the parameters and  for the coupled oscillators and the phenomena of
synchronization among them is studied using MatLab software for which the coupled pair fail to synchronize.
In order to establish mutual consensus between the two coupled oscillators that are otherwise not in synchrony,
five different control strategies have been designed and the performance measures of the implemented control
schemes are also evaluated. Out of the various control schemes to entrain two Van der pol oscillators to
synchronize over time, the simulation results quantify that the proposed intelligent Fuzzy Logic Control (FLC)
scheme gives optimal performance ahead of the rest.
Keywords: Synchronization, Entrainment, Oscillator, Coupling, Control.

1. Introduction

Biological oscillators are amenable to qualitative analysis even before they have been described
exhaustively in quantitative terms. Qualitative analysis can identify the elements essential for generating the
oscillations and can enhance ones understanding of underlying oscillator mechanisms [1]. The essential elements
of a biological oscillator includes an inhibitory feedback loop with one or more oscillating variables, and a
source of delay in the feedback loop, which allows an oscillating variable to overshoot a steady-state value
before the feedback inhibition is wholly effective. The analysis of the patterns of interactions and delays
observed in biological oscillators is simplified by the translation of variables, interactions, and delays into



R.Narmatha et al /Int.J. ChemTech Res.2014,6(12),pp 5033-5048. 5034

schematic representations. Mathematical models of nonlinear oscillators are used to describe a wide variety of
physical and biological phenomena that exhibit self-sustained oscillatory behaviour [2]. When these oscillators
are strongly driven by forces that are periodic in time, they often exhibit a remarkable ‘‘mode-locking’’
phenomena that synchronizes the nonlinear oscillations to the driving force.

2. Synchronization

A well known common feature of oscillatory system and biological oscillator, in particular, is their
ability to synchronize. Synchronization is bringing of two or several processes into a state of synchrony, that is,
into a state such that identical or corresponding elements of the processes occur at a fixed phase difference
relative to one another. Synchronization can also be defined as, the adjustment of rhythms of oscillating objects
due to their weak interaction [3]. Synchronization between dynamical systems and analysis of synchronization
phenomena in the evolution of dynamical systems has been an active field of research in many scientific and
technical disciplines. Multiple periodic processes with different natural frequencies come to acquire a common
frequency and in some cases also a common phase as a result of their mutual influence. In fact interaction
between individual oscillators may lead to mutual entrainment of their cycles and thus to emergence of coherent
internal dynamics. The output frequency at some point exactly matches with the input frequency and continue
to remain as such thereafter. The phenomenon which results in the matching of the output frequency with the
input frequency is called frequency entrainment or synchronization [4].

3. Nonlinear Oscillators

Active oscillators can generate spontaneous oscillations, which continue indefinitely. This is in contrast
to passive oscillators such as the strings of a piano, where oscillations die down. In the case of spontaneous
oscillations, a variable of the system changes periodically in time. The shape of oscillations can be sinusoidal or
follow a different periodic function. Oscillations are characterized by their amplitude and phase. The amplitude
is the maximal value the variable attains during a period; the phase indicates the state of the oscillator relative to
the beginning of a period. Spontaneous oscillations occur only in nonlinear dynamic systems that are open (i.e.,
there is a continuous flow of energy through the system from its environment) [5]. Biological systems fall in this
category and in general are able to exhibit oscillations. Relaxation oscillations are recognized as having
similarities to biological oscillations. A very old and important result in nonlinear dynamics is that when
nonlinear oscillators with stable limit cycles are subject to periodic perturbations, they may become entrained to
the perturbation. Rhythmic variations in blood pressure, heart pulse and other cardiovascular measures indicate
importance of understanding the dynamic aspects of cardiovascular rhythms. Cardiac conduction system can be
considered as a network of elements that self stimulates, such as: Sino Atrial (SA) node (the first pacemaker),
Atrio Ventricular (AV) node and His Purkinje fibre system. For the reason that these elements show oscillation
behaviour, they can be modelled as nonlinear oscillators [4].

4. Van Der Pol Oscillator

Conductive system of the heart can be stimulated to act as a network of elements and these elements
shows the oscillatory behaviour that can be modelled as nonlinear oscillators. Since the qualitative features of
the excitation potential of the heart is very close to the dynamic behaviour of the classical oscillator Van der
Pol, this oscillator can be considered as the starting point for this modelling [4]. The differential equation

is called the van der Pol oscillator, where  is  the  position  coordinate  which  is  a
dynamical variable, and  is a scalar parameter which controls the nonlinearity and the strength of the
damping. The state variables are assumed for the above differential equation as =  and = . The dynamic
behaviour of the oscillator model using the phase-plane method is initially studied. Phase plane analysis is an
important technique used for studying the behaviour of non linear systems, since there is no analytical solution
for a nonlinear system. The limit cycle describes the oscillations of nonlinear system which is a
closed trajectory in phase space having the property that at least one other trajectory spirals into it either as time
approaches infinity or as time approaches negative infinity. Such behaviour is exhibited in Van der Pol
oscillators that belong to the category of nonlinear systems [6].

5. Limit Cycle

A system to approach a periodic behaviour, which will thus, appears a closed curve in phase plane is
called a Limit Cycle [7]. It is having the property that at least one other trajectory spirals into it either as time
approaches infinity or as time approaches negative infinity. Such behaviour is exhibited in some nonlinear
systems. This includes the possibility that a distributed nonlinear system even while staying within the tolerance

http://scitation.aip.org/content/contributor/AU0022352
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limits, may exhibit a special behaviour of following a closed trajectory or limit cycle which describes the
oscillations of nonlinear system [8]. The existence of a limit cycle corresponds to an oscillation of fixed
amplitude and period. The limit cycle obtained is stable, since the trajectory converges towards it. The limit
cycle representation in phase plane for the model is carried out, where  and  corresponds to the two states
of the van der pol oscillator.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x2

Fig 5.1. Limit cycle representation in Phase plane, For (0)=1 , (0)=0 , =0.1.
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Fig 5.2. Limit cycle representation in Phase plane, For (0)=5 , (0)=0 , =0.1.
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Fig 5.3. Limit cycle representation in Phase plane, For (0)=10, (0)=0 , =0.1.
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Fig 5.4. Limit cycle representation in Phase plane, For (0)=5, (0)=0 , =0.01.
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Fig 5.5. Limit cycle representation in Phase plane, For (0)=5, (0)=0 , =1.

 Initially the scalar parameter ‘ ’ is maintained as 0.1 and subsequently varied in both ways. The model
is tested for a variety of initial conditions to observe its behaviour, and the limit cycle representations in phase
plane obtained are depicted in Fig’s 5.1 to 5.5. As inferred from the above figures, it is perceived that the model
has a stable limit cycle in phase plane. When  is plotted against , it is observed that the system states
approach a limit cycle approximating a circle at the origin with a radius of 2.

6. Analysis on Coupled Van Der Pol Oscillators

Two simulated Van der pol oscillators (VDP) are coupled by means of resistive coupling and the
response of the coupled pair for various coupling strengths is analyzed with the scalar parameter ‘ ’ maintained
as 0.1 throughout. On maintaining the coupling conductance (GC)  between  the  two  van  der  pol  oscillators  at
GC=1 Siemen (S) the two oscillators fail to synchronize as seen in Fig 6.1. There exist much difference in both
amplitude and phase in the simulated response.

0 5 10 15 20 25 30 35 40 45 50
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time in Seconds

S
ta

te
s 

of
 th

e 
tw

o 
os

ci
lla

to
rs

x1 of oscillator 1
x1 of oscillator 2

Fig 6.1. Response of Coupled VDP oscillators with GC = 1S.

The  GC is further varied accordingly to ascertain if the coupled oscillators can attain synchrony. A
reduction of the GC value to 1/10S is seen to improve the system response where the amplitude and phase
differences of the oscillator states decreases as before which is evident from Fig 6.2.
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Fig 6.2. Response of Coupled VDP oscillators with GC = 1/10S.
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A further decrease in the GC value to 1/100S yields a better result with negligible amplitude and phase
difference among the states of the coupled oscillator pair. The response obtained is presented in Fig 6
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Fig 6.3. Response of Coupled VDP oscillators with GC = 1/100S.

Eventually the lowest kept conductance value of 1/1000 S establish synchrony among the coupled
oscillators as seen in the figure 6.4 where the states of the oscillators are in phase with one another.

0 5 10 15 20 25 30 35 40 45 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time in Seconds

S
ta

te
s 

of
 th

e 
tw

o 
os

ci
lla

to
rs

x1 of oscillator 1
x1 of oscillator 2

Fig 6.4. Response of Coupled VDP oscillators with GC = 1/1000S.

From the simulated results, the coupling conductance of GC=1/100S is considered throughout for
further analysis, which yields a small phase shift between the states of the coupled pair of oscillators.

6.1 Analysis of parameter variations ‘ ’ in the oscillator model

While maintaining the parameter ‘ 1’  of  the  first  oscillator  at  0.1,  the  scalar  parameter  ‘ 2’ of the
second oscillator is reduced by a factor of 10 (0.01) for which the states exhibit an amplitude difference and a
small phase difference, eventually not in synchrony as seen in fig 6.5.
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Fig 6.5. Response of state x1 for two Coupled VDP oscillators. 1> 2.

Similarly when ‘ 2’ alone is increased to 1 while maintaining ‘ 1’ as before, the states of the coupled
oscillators again fail to attain synchrony with differences in amplitude as well as phase which is seen from fig
6.6.
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Fig 6.6. Response of state x1 for Coupled VDP oscillators. 1 2.

From the above simulated results it can be perceived that for any variations in the variable parameter
‘ ’, the state of the coupled oscillators fail to be in synchrony with appreciable amplitude and phase differences.
Since the ultimate motto is to establish synchrony between the coupled oscillators both in amplitude and phase,
different control techniques are proposed, and the same designed and implemented.

7 Controllers

This section briefly explains the theory on various control modes implemented to synchronize two
coupled van der pol oscillators that are otherwise not in synchrony.

7.1 Proportional Control

The most basic of the continuous control modes usually referred by the letter 'P' which aims to control
the process as the conditions change is proportional control. The larger the proportional band, the more stable
the control, but the greater the offset. The narrower  the proportional band, the less stable the process, but the
smaller the offset in a proportional controller, steady state error tends to depend inversely upon the proportional
gain, so if the gain is made larger, the error goes down [9].  The proportional response can be adjusted by
multiplying the error ‘e(t)’ by a constant Kp, called the proportional gain constant. The proportional term is
given by: which is proportional to the error, hence the name proportional controller where ‘ ’
is the controller output. A high proportional gain results in a large change in the output for a given change in the
error. If the proportional gain is too high, the system can become unstable.

7.2 Proportional + Integral Control

The PI controller combines the behaviour of the I and P controllers, allowing the advantages of both
controller types to be combined: fast reaction and compensation of remaining system deviation [10]. The
Proportional with integral term is given by, . The integral term accelerates the
movement of the process towards the set point and eliminates the residual steady-state error that occurs with a
pure proportional controller. However, since the integral term responds to accumulated errors from the past, it
can cause the present value to overshoot the set point value.

7.3 Proportional + Derivative Control

The PD controller consists of a combination of proportional action and differential action. The
differential action describes the rate of change of the system deviation. The derivative-action time Td is  a
measure  for  how much  faster  a  PD controller  compensates  a  change  in  the  controlled  variable  than  a  pure  P
controller [11]. The magnitude of the contribution of the derivative term to the overall control action is termed
the derivative gain, . The proportional with derivative term is given by, . The

derivative action predicts system behaviour and thus improves settling time and stability of the system but is
seldom used in practice because of its inherent sensitivity to measurement noise. If this noise is severe enough,
the derivative action will be erratic and actually degrade the control performance.

7.4 Proportional + Integral + Derivative Control

http://en.wikipedia.org/wiki/Overshoot_(signal)
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PID control is extremely common in industry, due to its ease of design however, it is worth noting that
it may not be desirable to implement the controller, due to the derivative term. The functions of the PID
controller includes providing feedback,  the ability to eliminate steady state offsets through integral action and
to anticipate the future through derivative action [12].Specifically, the PID controller differentiates the error,
which is defined as error, e = r – y (r is the set point and y is the process variable). If r is a step input, there will
be a discontinuity in e, and differentiating this would produce very large (theoretically infinite) signals. Thus,
the proportional with integral and derivative term is given by, . The

additional integral mode corrects for any offset (error) that may occur between the desired value (set point) and
the process output automatically over time [13].

7.5 Fuzzy Logic Control

Fuzzy Logic (FL) is a problem-solving control system methodology that lends itself to implementation
in systems ranging from simple, small, embedded micro-controllers to large, networked, multi-channel PC or
workstation-based data acquisition and control systems. Fuzzy Logic refers to a large subject dealing with a set
of methods to characterize and quantify uncertainty in engineering systems that arise from ambiguity,
imprecision, fuzziness and lack of knowledge. Fuzzy logic is a reasoning system based on a foundation of fuzzy
set theory, itself an extension of classical set theory, where set membership can be partial as opposed to all or
none, as in the binary features of classical logic [14]. FL provides a simple way to arrive at a definite conclusion
based upon vague, ambiguous, imprecise, noisy, or missing input information. FL's approach to control
problems mimics how a person would make decisions, only much faster.

Fuzzy  Logic  incorporates  a  simple,  rule-based  IF  ‘X’  AND  ‘Y’  THEN  ‘Z’  approach  to  solving  a
control problem rather than attempting to model a system mathematically. The FL model is empirically-based,
relying on an operator's experience rather than their technical understanding of the system. The purpose of
control is to influence the behaviour of a system by changing an input or inputs to that system according to a
rule or set of rules that model how the system operates [15]. The system being controlled may be mechanical,
electrical, chemical or any combination of these.

The major drawback of the PID control system is that it usually assumes that the system being
modelled is  linear  or  at  least  behaves in some fashion that  is  a  monotonic function.  As the complexity of  the
system increases it becomes more difficult to formulate that mathematical model. Fuzzy control replaces the
role of the mathematical model and replaces it with another that is build from a number of smaller rules that in
general only describe a small section of the whole system that is, a fuzzy model has replaced the mathematical
one [16]. There are different types of membership functions available, among which triangular membership
function is used in this work.

8. Implementation of Control Strategies and Simulation results

The proposed control strategies are designed and implemented and the simulation results are presented
below.

8.1 Proportional Controller

The controller parameters are estimated from the cost function where the value of the controller
parameters that yields the lowest ISE (Integral Square Error) value is selected. The plot of the same for the case
of a P controller is illustrated in Fig 8.1.1.
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Fig 8.1.1. Cost function plot to obtain controller parameter for P Control.

With identical values of  as 0.1 for both the coupled identical oscillators a Proportional Control scheme is
implemented for which the state of the oscillators attain synchrony and the simulated response is shown in fig
8.1.2.
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Fig 8.1.2. Response of coupled VDP oscillators in synchrony with P Control for .

A further increase made in the 2 of the second oscillator to 0.2 while maintaining 1 as  before also
synchronizes the coupled pair with P control, as shown in the fig 8.1.3.
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Fig 8.1.3. Response of coupled VDP oscillators in synchrony with P Control for .

  The value of the second oscillator is reduced and P control implemented. For the parameters 1=0.1 and
2=0.01 the two oscillators eventually maintain synchrony as shown in the fig 8.1.4.
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Fig 8.1.4  Response of coupled VDP oscillators in synchrony with P Control for > .
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8.2 Proportional + Integral Controller
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Fig 8.2.1. Cost function plot to obtain controller parameters for PI Control.

With identical  values maintained at 0.1 as before a PI control implemented is seen to synchronize the
two coupled oscillators and the simulated response is presented in fig 8.2.2.
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Fig 8.2.2. Response of coupled VDP oscillators in synchrony with PI Control for .

Upon maintaining 1 as before and 2 alone increased to 0.2 the implemented PI control scheme
maintains synchrony of the coupled oscillator pair as shown in the fig 8.2.3.
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Fig 8.2.3. Response of coupled VDP oscillators in synchrony with PI Control for .

For a decreased 2 value as 0.01 for the second oscillator while maintaining , a P+I control
implemented eventually maintain synchrony of the coupled oscillators as depicted in the response of fig 8.2.4.
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Fig 8.2.4. Response of coupled VDP oscillators in synchrony with PI Control for .

8.3 Proportional + Derivative Controller

With  the  aid  of  the  controller  parameters  obtained  from the  cost  function  plot,  it  is  tried  to  coax  the
coupled oscillators attain synchrony. For identical values of  maintained at 0.1 for both the coupled oscillators
the implemented PD Control scheme maintain synchrony between them as presented in the fig 8.3.2. The cost
function plot for the desired PD control is presented in fig 8.3.1.
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Fig 8.3.1. Cost function plot to attain controller parameters for PD Control.
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Fig 8.3.2. Response of coupled VDP oscillators in synchrony with PD Control for .

The parameter 1 is maintained as before while 2 is increased to 0.2 and the implemented PD control
is seen to institute synchrony among the coupled oscillators as in fig 8.3.3.
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Fig 8.3.3. Response of coupled VDP oscillators in synchrony with PD Control for .

A decrease in the parameter 2 of the second oscillator alone to 0.01 while maintaining 1 of the first
oscillator is made and the PD Control implemented. The control scheme maintains the coupled oscillators in
synchrony as shown in the response of fig 8.3.4.
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Fig 8.3.4. Response of coupled VDP oscillators in synchrony with PD Control for .

8.4 Proportional + Integral + Derivative Controller

The cost function plot obtained is again made use of to find the controller parameters for PID scheme as
shown in fig 8.4.1.
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Fig 8.4.1. Cost function plot to obtain controller parameters for PID Controller.

For similar settings in the parameter ‘ ’ maintained at 0.1 for both the oscillators, the PID control
implemented synchronizes the coupled pair and the response obtained is illustrated in fig 8.4.2.
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Fig 8.4.2. Response of coupled VDP oscillators in synchrony with PID Control for .

As before the parameter 1 is maintained, with 2 alone increased to 0.2 and PID control implemented.
The control scheme synchronizes the two oscillators both in amplitude and phase and the simulated response is
shown in the fig 8.4.3.
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Fig 8.4.3. Response of coupled VDP oscillators in synchrony with PID Control for .

The parameter 2 of the second oscillator alone is now reduced to 0.01 while maintaining 1, and the
implemented PID control synchronizes the coupled oscillators as seen in fig 8.4.4.
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Fig 8.4.4. Response of coupled VDP oscillators in synchrony with PID Control for .

8.5 Fuzzy Logic Controller

A Mamdani type fuzzy logic control (FLC) is designed with triangular membership function with the
appropriate rule base as seen in the rule viewer of fig 8.5.1.
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Fig 8.5.1. Rule viewer in the implemented Fuzzy logic control.

All the rules that apply are invoked, using the membership functions and truth values obtained from the
inputs, to determine the result of the rule which in turn will be mapped into a membership function and truth
value controlling the output variable. The results are combined to give a specific ("crisp") answer, a procedure
known as "defuzzification". These rules are typical for controlling in that, the antecedents consist of the logical
combination of the error signals and the consequent is a control command output [17].

The implemented FLC maintains synchrony for the coupled oscillators for identical parameters of ‘ ’
maintained at 0.1as shown in the fig 8.5.2.
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Fig 8.5.2. Response of coupled VDP oscillators in synchrony with FLC for .

The  parameter  ‘ 1’  is  maintained  as  before  with  ‘ 2’ alone increased to 0.2 and FLC scheme
implemented. The FLC control eventually synchronizes the two coupled oscillators both in amplitude and phase
as shown in fig 8.5.3.
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Fig 8.5.3. Response of coupled VDP oscillators in synchrony with FLC for .

The parameter ‘ 2’ is now decreased to 0.01 by maintaining ‘ 1’ same as before, and the FLC scheme
implemented. The FLC maintain synchrony among the coupled oscillators as shown in fig 8.5.4.

http://en.wikipedia.org/wiki/Defuzzification
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Fig 8.5.4. Response of coupled VDP oscillators in synchrony with FLC for .

8.6  Performance Evaluation

The problem of designing the 'best' controller can be formulated as the type of the controller and the
values  of  its  adjusted  parameters  so  as  to  minimize  the  (Integral  of  the  Square  Error)  ISE  of  the  system's
response [12]. To strongly suppress large errors, ISE is better because the errors are squared and thus contribute
more to the value of the integral and hence the same is opted in this work where,

ISE = ò
¥

0

2 )( dttE

and E(t) is the error. In addition to ISE, steady state errors as well as the synchronization time(both in amplitude
and phase) are considered and the same tabulated for all variations effected.

Table 1: ε1= ε2.

Table 2: ε1<ε2.

S.No Controller ε1 ε2 GC (S) ISE S.S. Error Synchronization
time (Sec)

1 P 0.1 0.2 1/100 0.06676 −0.002015 X=45
V=45

2 PI 0.1 0.2 1/100 0.06681 −0.00187 X=50
V=45

3 PD 0.1 0.2 1/100 0.0001229 −0.0008279 X=45
V=45

4 PID 0.1 0.2 1/100 0.00003118 −0.0004099 X=45
V=40

5 FUZZY 0.1 0.2 1/100 0.000003218 −0.0001053 X=45
V=40

S.No Controller ε1 ε2 GC (S) ISE S.S. Error Synchronization
time (Sec)

1 P 0.1 0.1 1/100 0.00099 −0.0004432 X=65
V=60

2 PI 0.1 0.1 1/100 0.001007 −0.0003481 X=65
V=65

3 PD 0.1 0.1 1/100 0.00001926 −0.0002803 X=65
V=50

4 PID 0.1 0.1 1/100 0.00001542 −0.0002411 X=65
V=65

5 FUZZY 0.1 0.1 1/100 0.00000465 −0.0001093 X=60
V=60
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Table 3: ε1>ε2

S.No Control ε1 ε2 GC
(S)

ISE S.S. Error Synchronization
time (Sec)

1 P 0.1 0.01 1/100 0.01591 −0.008019 X=120
V=135

2 PI 0.1 0.01 1/100 0.01595 −0.008021 X=120
V=135

3 PD 0.1 0.01 1/100 0.0009434 −0.000535 X=120
V=125

4 PID 0.1 0.01 1/100 0.0000434 −0.0000883 X=120
V=125

5 FUZZY 0.1 0.01 1/100 0.0000135 −0.0000413 X=35
V=40

From the performance evaluation tables presented above it is observed that Fuzzy controller exhibits
better performance with the lowest ISE as well as the steady state error. FLC exhibits faster response,
consuming lesser time to attain synchronization both in amplitude and phase of the response well ahead of the
rest.

9. Conclusion

When two oscillators operate physically near one another the output from either one of them can
influence the behavior of the other. The coupled oscillators are observed to be phase locked since they exhibit a
constant phase difference regardless of being small, medium or large. Two Van der pol Oscillators are coupled
and the phenomena of synchronization is studied using MATLAB Software. Five different control strategies for
a pair of coupled van der pol oscillators that are otherwise not in synchrony have been designed and the
performance measures of the implemented control schemes evaluated.

Out of the various control schemes to entrain two van der pol oscillator to synchronize over time, the
simulation results quantify that the proposed Fuzzy Logic Control (FLC) scheme gives optimal performance
over the other control strategies.  Interacting nonlinear oscillators with different individual frequencies can
spontaneously synchronize themselves to a common frequency only if the coupling strength exceeds a certain
threshold value. This phenomenon is of much relevance to the understanding of biological oscillators such as
the coupled heart pacemaker cells [18]. The mutual interactions  between the two coupled van der pol oscillators
are found to be phase dependent and can have either an advancing or delaying influence on the other oscillators
discharge so that, equality of period i.e., mutual entrainment within the Sino Atrial (SA) node of the cardiac
system can be the end result.
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